Pan-European Distribution of White-Nose Syndrome Fungus (\textit{Geomyces destructans}) not Associated with Mass Mortality

Authors and Affiliations

Sébastien J. Puechmaille1,2#*, Gudrun Wibbelt3#, Hubert Fuller1, Frédéric Forget4, Kristin Mühldorfer5, Andreas Kurth5, Wieslaw Bogdanowicz6, Christophe Borel7, Thijs Bosch8, Thomas Cherezy9, Tamás Görföl10, Haarsma Anne-Jifke11, Frank Herhaus12, Guenael Hallart13, Matthias Hammer14, Christian Jungmann15, Yann Le Bris16, Lauri Lutsar17, Matti Massing18, Bart Mulkens19, Karsten Passior20, Martin Starrach21, Ulrich Zöphel22, Emma C. Teeling1,2

1 School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
2 Conway Institute of Biomolecular & Biomedical Research, Dublin, Ireland
3 Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
4 Plecotus working group, Association Natagora, Brussels, Belgium
5 Robert Koch Institute, Berlin, Germany
6 Museum & Institute of Zoology PAS, Warszawa, Poland
7 Commission de Protection des Eaux, du Patrimoine, de l’Environnement, du Sous-sol et des Chiroptères –Lorraine, Velaine-en-Haye, France
8 Dutch Bat Workers Group, Nijmegen, The Netherlands
9 Coordination Mammalogique du Nord de la France, Béthune, France
10 Nature Conservation Foundation of Tolna County, Szekszard, Hungary
11 Centre for Ecosystem Studies, Alterra and Wageningen University, Wageningen, The Netherlands
Abstract

Currently being written.
Introduction

White nose-syndrome (WNS) is a devastating disease causing mass mortalities in hibernating bats in North-America. In May 2009, it was estimated that over one million bats had died from the disease which was first documented in February 2006 at Howe Cave, West of Albany, New York [1]. A visually conspicuous white fungus grows on the face, ears, or wings of stricken bats with hyphae penetrating deep into the connective tissue of glabrous skin and snout [2] and causing severe damage [3]. The fungus associated with WNS is a newly described, psychrophilic (cold-loving) species (*Geomyces destructans*) [4], closely related to other psychrophilic species of *Geomyces* [5,6]. Although it is not yet proven whether *G. destructans* is the causative agent of the disease or if it needs to be regarded as a secondary infection, the fungus is always found on bats at sites with hibernating bats mass mortalities [7]. To date, bacteriologic, virologic, parasitologic and pathologic evaluations as well as toxic contaminants exposure studies did not identify any other agents/cause of death, which reinforces the idea that *G. destructans* is the causative agent [2,7,8,9].

G. destructans has been extensively found in different species of bats in North-America, from the states of Ontario and Quebec in Canada down to North Carolina and Oklahoma in the USA. Three recent studies investigating samples collected in 2008-2010 have shown that *G. destructans* was also present in six European countries (France, Germany, Switzerland, Czech Republic, Slovakia & Hungary) [6,10,11]. Nevertheless, the geographic coverage of these studies was limited to one or a few countries, while the extent of the distribution of *G. destructans* in Europe remains poorly known. In this paper, we combine previously published data...
on the distribution of *G. destructans* in Europe [6,10,11] with new data from twelve countries covering 2,400 km from West to East (France to Turkey) and 1,900 km from North to South (Estonia to Turkey) and demonstrate the widespread presence of the fungus in Europe without associated mass mortality.

Results

Published data on *Geomyces destructans* in European bats, 2008-2010

Although photographs of bats with fungal growth similar to *G. destructans* were published in Germany in the 1980’s [12], and also taken in the 1990’s in the Czech Republic [10], there has been no confirmed record of *G. destructans* in Europe prior to 2008. In 2010, *G. destructans* has been confirmed *via* morphological and genetic analyses from samples collected during the winters 2007/2008, 2008/2009 and 2009/2010 in six European countries [6,10,11]. In France, Hungary, Switzerland and Slovakia, the fungus has been confirmed from 1-2 location(s) while it has been confirmed at 8 sites in Germany and 23 sites in the Czech Republic [6,10,11]. All *G. destructans* have been isolated from hairs, swabs or touch imprints from bats [6,10,11]. In Europe, eight *Myotis* species have been identified to be colonized with *G. destructans*: *M. myotis*, *M. blythii* (referred to as *M. oxygnathus* in [11]), *M. mystacinus*, *M. daubentoni*, *M. dasycneme*, *M. nattereri*, *M. bechsteinii* and *M. brandtii*. Species from other families were present in the caves with infected individuals (e.g. Miniopteridae: *Miniopterus schreibersii*; Rhinolophidae: *Rhinolophus hipposideros* and *R. ferrumequinum*), but no *G. destructans* has been confirmed from these species. Previous extensive surveys of cave fungi in Europe [i.e.
or fungi associated with insects hibernating in underground sites [16] never
reported *G. destructans* in their inventory, although some other species of *Geomyces*
were recovered [13,14,15].

New data on *G. destructans* in Europe 2005-2010

During winter hibernation counts, a total of 66 bats from 48 sites in twelve
European countries were reported to have visible white fungal growth (Table 1, Fig.
1). This represents the first records from eight countries (Austria, Belgium, Denmark,
Estonia, The Netherlands, Poland, Romania, Turkey and Ukraine). Sixty six bats were
alive while two of them were found dead in the hibernacula. These 66 bats belonged
to eight different *Myotis* species, *M. myotis* (42), *M. mystacinus* (9), *M. dasycneme*
estalerai/sp. A* (1) and *M. brandtii* (1). Of these, molecular and morphological
identification of the colonizing fungus were carried out on 22 cases, while only
photographic evidence was obtained for a further 29 cases (Table 1 & Fig. 2). The
remaining 15 cases were based on reports of visual observations of a white fungal
growth on bat snouts and/or ears, which was very similar to pictures presented in Fig.
2.

The temporal range of reported cases of live bats with white-fungus was not
evenly distributed throughout the winter/spring, with about 2/3rd of the cases reported
in March (42/66; Fig. 3). The number of reported cases nearly tripled between
February (16 cases) and March (42 cases). The earliest case was reported on January
17th from Belgium and the two latest cases were observed on May 23rd in Estonia and
June 25th in France (Table 1 & Fig. 3A, K).
Out of a total of 66 bats with fungal growth, 21 were sampled, 16 with touch imprints and 5 with cotton swabs. The 21 bats sampled (19 alive and 2 dead) belonged to the *Myotis* species from which *G. destructans* was previously isolated (see list above). In some cases, we were not able to discriminate between *M. myotis* and *M. blythii* (referred to as *M. myotis/blythii*) as well as between the newly recognized *M. escalerai* [17,18] and *Myotis* sp. A [19], a yet undescribed cryptic species from the *M. nattereri* species complex [17,20]. Additionally, swab samples were collected from the tunnel wall of an Estonian hibernaculum. On the 23rd of May 2010, a *M. brandtii* was observed in this hibernaculum with white fungal growth on its snout (Fig. 1A) but no sample was collected at the time. When the site was revisited for sample collection on the 1st of June 2010, the bat had left the site so samples were collected by swabbing the walls of the tunnel where the bat was seen 9 days before. Four cotton swabs were used to sample different areas a few centimetres around the location where the bat was observed. The four swabs were then streaked onto four Sabouraud’s agar plates each and monitored regularly to physically remove any fungal growth that was not similar to *G. destructans*. Although the amount of fungi varied per swab sample, *G. destructans* was recovered from all four swabs, which from now on are considered as one sample, bringing the total of samples analysed to 22. No mass mortality was reported at any of the sites investigated.

Out of 22 samples investigated in the laboratory, 14 of the 16 touch imprint samples presented characteristic conidia when observed under a microscope and two of them were doubtful; none of the cotton swabs were inspected under a microscope prior to culture. Cultures from 17 of these samples were successful (no cultures were done for 2 samples). The two dead bats investigated did not reveal the presence of *G.*
but other fungal species such as *Mucor* sp. and *Cladosporium* sp. (data not shown).

DNA was isolated from the 17 cultures of which 15 showed morphological similarity with *G. destructans* (e.g. curved conidia) and from five touch imprints without culture available (n=2) or with unsuccessful culture attempts (n=3). Amplification and sequencing of the internal transcribed spacer (ITS) region (ITS1, 5.8S, and ITS2) was preferred over the small subunit (SSU) rDNA as it was shown to be more informative and was comparable to both, European [6,11] and North American *G. destructans* [7,21]. All sequences obtained (Accession Numbers: xxxxxx-yyyyyyy) were identical and showed 100% similarity with previously published *G. destructans* ITS sequences available on GenBank (retrieved on October 13th) [6,7,11,21].
Discussion

G. destructans has been first identified in Europe in 2008-2009 [6,11] but increasing photographic evidence suggest that the species was present in Europe well before this date [this study; 10,12]. A certain number of studies investigated fungi species present in European caves, including bat guano [13,14,22,23] and although most of them report *Geomyces* species, no *Geomyces* species with curved conidia (so far typical of *G. destructans*) have ever been reported. In the Czech Republic, Kubátová & Dvořák [16] investigated fungi associated with insects hibernating in underground sites but did not find *Geomyces* species. To our knowledge, only one study in Europe has investigated fungi present in bat’s skin and hair samples where, based on our current knowledge, *G. destructans* is most likely to be found. During the winter 1999/2001, Larcher *et al.* [24] collected 25 samples of hair and skin swabs from six species, including three *Myotis myotis*, but did not find any *Geomyces* species. It is important to note that most fungal cultures have been carried out at temperatures above 24-25°C, temperatures at which *G. destructans* does not grow [4,21]. A better representation of temperate caves fungal diversity might be obtained by also culturing fungi at temperatures in the range of 10-15°C, which is more representative of temperatures encountered in European caves. Finally, to confirm the presence of *G. destructans* in Europe prior to 2009, historical collections of bat specimens (or eventually cave soil samples), especially specimens collected during the hibernation period, should be screened for the fungus. Retrospective investigations have provided valuable information on the historic distribution of *Batrachochytrium dendrobatidis* [25], the etiologic agent of chytridiomycosis which is now decimating amphibian populations on all continents except Antarctica [26].
Combining previously published data from France, Germany, Switzerland, Hungary, The Czech Republic and Slovakia [6,10,11], additional data collected from France, Germany and Hungary (this study), and new data from Belgium, The Netherlands, Poland and Estonia (this study), we demonstrate here that *G. destructans* is widespread in Europe. We consider the photographic evidence of bats with white fungus matching the characteristic growth pattern (e.g. Fig. 1; pictures from Ukraine and Turkey) to highly likely represent *G. destructans*, because so far all tested live European bats with such white fungal growth on their nose, similar to Fig. 1, have been confirmed to carry *G. destructans*. These findings further support the fact that *G. destructans* is widespread across Europe. As depicted in Fig. 1, most *G. destructans* cases (confirmed and suspected) are found from North-eastern France through Belgium, The Netherlands, Germany and the Czech Republic. However, it is not known whether this pattern reflects a true higher occurrence and/or prevalence of the fungus in these regions or if it is at least partly due to sampling bias whereby the fungus is more likely to be found in regions with a higher number of underground sites visited every winter or in regions were the fungus is specifically searched for. It is most likely hat this large scale pattern is likely due to a sampling bias as for example, the largest number of sites reported with *G. destructans* in the Czech Republic (76 localities with suspect or confirmed *G. destructans*) is also associated with the largest number of sites where the species was looked for (over 800) [10]. Similarly, it is unknown whether *G. destructans* is absent or rare in the Mediterranean region where it has not been found yet despite specific searches (i.e. Italy,[27]).

The number of observations of bats with white fungal growth per week highlights an increasing prevalence as winter passes and a sudden drop when bats emerge from hibernation in spring. This suggests that either bats acquire *G.
destructans late during the hibernation period or that the fungus is carried by the bat at the onset of hibernation but needs time to develop as a visible white fungal growth. At present, virtually nothing is known about how exactly G. destructans is transmitted to the bats, either via the environment or via bat to bat contacts. Although under laboratory conditions, G. destructans’ growth rate >10 mm per month is commonly reported for a wide range of media and temperatures in the range of 4-10 °C [4,6,10,11,21], which are temperatures commonly selected by bats for hibernation [28], the fungus’ growth rate might substantially differ under natural conditions. Other climatic factors, particularly humidity, might also influence G. destructans growth rate. The importance of relative humidity has been suggested by various researchers based on field observations; nevertheless, its influence on G. destructans growth rate has never been assessed. Differences in temperature and/or humidity might help explaining the regional differences in prevalence observed between submountainous humid to mesic regions (high prevalence) versus mountainous and limestone regions (low prevalence) observed in the Czech Republic [10]. Furthermore, during hibernation, bats rouse every two weeks in average [29,30] and groom the fungus off [10], which will considerably reduce the chance of the fungus to become apparent. Although it is not possible to clearly identify the mechanism responsible for the sudden increase in G. destructans prevalence in late February and March, the data suggest that shorter winter periods should be associated with lower G. destructans prevalence. This prediction seems to hold as in the Mediterranean region, associated with shorter hibernation periods, no bats with visually conspicuous fungal growth has been reported yet, although, winter cave surveys were carried out around the Mediterranean Sea. The case reported from Southern France (June 25th 2010, Fig. 3K) was found in the Pyrenees’ mountains at ca. 1700 m a.s.l. and hence, is not considered
as belonging to the Mediterranean climatic region. More surveys are however necessary to uncover whether the length of the hibernation period and/or climatic conditions have a direct or indirect effect on *G. destructans* growth rate and prevalence on bats.

It is crucial that the change in prevalence over the hibernation period is considered when comparing prevalence across sites and/or years. Our results show that bats with fungal growth are first seen in January, then the prevalence slowly increases in February and peaks in March, while in April, when bats emerge from hibernation, the prevalence drops again. Our results are in agreement with recent results from the Czech Republic where on the winter 2009/2010, the number of sites with bats with white fungal growth remarkably increased from 4.1% in January/February (33/800 sites; regular bat monitoring) to 77.5% in late February/March (76/98 sites; additional inspections) [10]. This study reported that this increase in *G. destructans* prevalence was “suggestive of an epizootic spread of the fungus” [10]; we propose an alternative explanation whereby the increase in prevalence of *G. destructans* in late winter (March) has regularly (yearly) happened in Europe but has been unnoticed in the past as nearly all hibernation counts were carried out between December and mid-February when *G. destructans* prevalence is low, but not in March [31] when the prevalence of *G. destructans* is the highest (Fig. 3). By increasing the sample size, some cases might be reported earlier in the hibernation season or later through the summer, but we expect that the general pattern observed will not change. Prevalence here does not directly refer to the prevalence of *G. destructans* on bats but rather to the prevalence of visible signs of *G. destructans* growing on them. Our ability to detect *G. destructans* growth on bats can substantially differ with proximity to the bats (i.e. low ceiling vs. high ceiling), the
location of the bat (ceiling vs. crevices), etc. Despite these difficulties in assessing the prevalence, in agreement with other studies [6,10,11], our data demonstrate that the species most commonly encountered with *G. destructans* growth is the largest European *Myotis* species, *Myotis myotis*.

We report here two individual bats with white fungal growth around their nose (one confirmed as *G. destructans*) from May and June, both individuals being in torpor in cold underground sites. This represents the first mention of individuals with *G. destructans* colonisation outside of the hibernation period and raises questions about the role of these individuals in the persistence of the fungus in the bat population. During the summer period, while females aggregate in colonies to raise their young, it remains largely unknown where males are roosting [e.g. 32]. Generally, some males can be present in maternity colonies but they represent only a minority if we assume a female to male ratio of 1/1. Furthermore, during the swarming season in late summer/autumn, large numbers of individuals aggregate in caves, mines or tunnels and come in close contact with each other (chasing, mating, etc.) [32,33,34,35,36,37], which could represent a place and time where *G. destructans* is transmitted between individuals. We also report the isolation of *G. destructans* from the environment surrounding hibernating bats. The presence of viable spores of *G. destructans* on the surfaces of the hibernation sites has large implications for the understanding of the transmission mechanisms. It seems likely that cave walls could serve as a passive vector and/or reservoir for *G. destructans* spores. It is not yet known how long these spores can remain viable for but as most spores are viable for an extended period of time, bats entering these sites in autumn (for swarming and/or hibernation) could become contaminated with *G. destructans* spores left from bats of the previous winter. In North-American, Lindner *et al.* [38] successfully amplified
ITS sequences identical to *G. destructans* DNA from soil samples collected during the winter 2008-2009 at three bat hibernacula and stressed the importance of the environment as a reservoir and its possible importance on *G. destructans* dynamics and therefore WNS. Our results confirm the view of Lindner *et al.* [38] and further suggest that more work is needed to understand the exact role of walls (reservoir, passive vector, etc.) as they are in physical contact with bats.

The wide distribution of *G. destructans* in Europe and the absence of associated mortality supports the hypothesis that *G. destructans* has co-evolved with European bats and only recently arrived in North America where it is causing unprecedented mass mortalities [6,7,10,11]. Nevertheless, it is not yet known whether the fungus alone is causing the mortality or whether it needs to be associated with other pathogens such as viruses to cause mass mortality. Recent work on the Colony Collapse Disorder affecting bees in North America, Europe and Asia has shown that the presence of the microsporidian *Nosema* alone cannot explain the disorder [39] but the association between *Nosema* and an invertebrate iridescent virus is always found in colonies suffering from the disorder [40]. Further studies are needed to investigate pathogens found in healthy bats and bats dying from WNS in North America [6].

Phylogeographic studies on European bat species have shown that in the last 100,000 years, some species colonized Europe from Western Asia [41], including *Myotis blythii* [42,43] which has been found with *G. destructans* [11]. We can therefore speculate that *G. destructans*’ distribution is probably not limited to Europe and possibly extends eastwards into Russia, Western and Central Asia. Further surveys are necessary to clarify the global distribution of *G. destructans*.
We have shown here that *G. destructans*, the most likely causative agent of WNS in North America, is widespread in Europe, but not associated with mass mortality. The prevalence of visible fungal growth on bats increases in February/March before sharply decreasing when bats emerge from hibernation. We also isolated viable *G. destructans* from the walls of an underground site suggesting that hibernacula walls could be a passive vector and or reservoir for *G. destructans* and therefore, might play an important role in the transmission process. Further research is needed to clarify the global prevalence of *G. destructans* and identify variables (e.g. temperature, humidity, hibernation length, etc.) explaining regional differences. Finally, further research needs to be carried out in different parts of the globe, especially temperate region of the Northern and Southern hemispheres, to precisely determine *G. destructans* distribution.

Materials and Methods

Samples collection

During ongoing population censuses carried out in different countries across Europe, information on bats with visible white fungal growth on snouts and/or ears was recorded. Whenever possible, sterile dry cotton swabs [6] or adhesive tape touch imprints [11] were used to collect the fungal material from the bats. In Estonia, samples were collected from the wall of the tunnel where a bat with characteristic white fungus was observed nine days prior to the sampling. Where no sample collection was possible, a photograph was taken of the bat (photographic record). In
cases where neither sample collection nor photographic evidence was obtained, the record was classified as visual observation. Live hibernating bats with powdery, white fungal growth on their noses were considered as *G. destructans* suspects but not WNS suspects as apart from the presence of the fungus associated with WNS in North-America, there is presently no data supporting the occurrence of WNS in Europe and the fungus has not (yet) been identified on dead bats [11,44]. Although, given that *G. destructans* prevalence can reach high levels in some species (i.e. *Myotis myotis*) in late winter (especially in March), it can be expected, that by chance some bats dying from causes unrelated to the presence of *G. destructans* will also be carrying the fungus. But unless the criteria for the diagnosis of WNS are met (confirmation by histo-pathology and PCR) [2] dead bats with fungal growth in Europe cannot be considered as WNS suspects. Instead, various species of fungi have been identified on dead bats [11,27], many of them potentially being just post-mortem colonisations.

Fungal cultures

In the laboratory, samples were treated as in [6] for swabs and following [11] for touch imprints. Briefly, swabs were streak-plated onto plates of Sabouraud’s agar, supplemented with 0.1% mycological peptone. For touch imprints, small areas with fungal conidia characteristic of *G. destructans* were identified by light microscopy and the tape was disinfected and excised before being transferred for culture to Sabouraud’s agar. The plates were sealed with parafilm and incubated inverted in the dark at 10°C. A fungal growth developed within 14 days, from which single spore cultures were established.
Molecular identification

Each culture was sequenced for one molecular marker, the rRNA gene internal transcribed spacer (ITS) region (ITS1, 5.8S, and ITS2) to further confirm species identity. The DNA extraction, PCR amplification and DNA sequencing followed protocols described in Puechmaille et al. [6]. Briefly, DNA was extracted using the Qiagen Blood and Tissue kit following the manufacturer’s instructions with slight modifications (after step 3, we added an incubation time of 10 minutes at 70°C). PCR reactions were carried out in 25 μL containing 1 μL of DNA extract (at 10-75 ng/μL), 1.5 mmol/L MgCl₂, 0.4 μmol/L each primer (Forward: ITS4, 5’-TCCTCCGCTTATTGATATGC-3’; Reverse: ITS5, 5’-GGAAGTAAAAGTCGTAACAAGG -3’; [45]), 0.2 mmol/L dNTP, 1x PCR buffer and 1 U Platinum Taq DNA Polymerase High Fidelity (Invitrogen). PCR cycling conditions were; initial step 15’ at 95°C, then 10 cycles of 30” at 95°C, 1’45” at 60°C (reduce of 2°C every 2 cycles), 1’ at 72°C, following by 30 cycles of 30” at 95°C, 1’45” at 50°C and 1’ at 72°C. PCR products were purified and sequenced by Macrogen Inc. (Seoul, Korea) in both directions using the PCR primers. Complementary sequences were assembled and edited for accuracy using CodonCode Aligner 3.0.3 (www.codoncode.com/aligner/download.htm).

Acknowledgments

We would like to thanks Dóczy Annamária, Andriy-Taras Bashta, Frédéric Blanc, Gaby Bollen, Thomas Chatton, Emrah Coraman, Jére Csaba, Simon Dutilleul, Mehmet Doker, Oliver Gebhardt, René Janssen, Daniel Lefèvre, Barti Levente, Bernd Ohlendorf, Rian Pulles, Tony Rock, Wolfgang Rackow, Sébastien Roué, Bücs
Szilárd, Abigel Szodoray-Parádi, Farkas Szodoray-Parádi and Julien Vittier for providing us with their field observations.

References

8. Kannan K, Hun Yun S, Rudd RJ, Behr M (2010) High concentrations of persistent organic pollutants including PCBs, DDT, PBDEs and PFOS in little brown...
bats with white-nose syndrome in New York, USA. Chemosphere 80: 613-618.

Table 1. Confirmed and suspected *Geomyces destructans* records from Europe.

<table>
<thead>
<tr>
<th>Country</th>
<th>Lat</th>
<th>Lon</th>
<th>Date</th>
<th>Species</th>
<th>Culture</th>
<th>GenBank No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>47.7</td>
<td>-2.1</td>
<td>04/03/2010</td>
<td>Myotis myotis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>47.7</td>
<td>-2.1</td>
<td>04/03/2010</td>
<td>Myotis mystacinus</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>50.6</td>
<td>2.5</td>
<td>22/02/2010</td>
<td>Myotis nattereri</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>49.8</td>
<td>5.3</td>
<td>03/04/2010</td>
<td>Myotis myotis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>50.8</td>
<td>5.6</td>
<td>18/03/2010</td>
<td>Myotis mystacinus</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>50.8</td>
<td>5.6</td>
<td>18/03/2010</td>
<td>Myotis mystacinus</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>52.0</td>
<td>5.8</td>
<td>09/03/2010</td>
<td>Myotis daubentonii</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>52.1</td>
<td>4.3</td>
<td>02/2010</td>
<td>Myotis dasycneme</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>49.7</td>
<td>7.4</td>
<td>10/03/2010</td>
<td>Myotis myotis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>49.8</td>
<td>9.6</td>
<td>22/03/2010</td>
<td>Myotis myotis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>50.7</td>
<td>13.7</td>
<td>20/03/2010</td>
<td>Myotis myotis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>50.9</td>
<td>7.5</td>
<td>18/04/2009</td>
<td>Myotis myotis</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>51.2</td>
<td>8.1</td>
<td>21/03/2010</td>
<td>Myotis mystacinus</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>51.2</td>
<td>8.1</td>
<td>21/03/2010</td>
<td>Myotis mystacinus</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>51.2</td>
<td>8.1</td>
<td>07/03/2010</td>
<td>Myotis myotis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>51.2</td>
<td>8.1</td>
<td>07/03/2010</td>
<td>Myotis myotis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>52.3</td>
<td>9.5</td>
<td>23/03/2010</td>
<td>Myotis myotis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>52.3</td>
<td>9.4</td>
<td>23/03/2010</td>
<td>Myotis mystacinus</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>47.1</td>
<td>17.6</td>
<td>24/03/2010</td>
<td>Myotis myotis</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>47.1</td>
<td>17.6</td>
<td>24/03/2010</td>
<td>Myotis myotis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>50.8</td>
<td>16.7</td>
<td>07/03/2010</td>
<td>Myotis myotis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>59.3</td>
<td>24.6</td>
<td>01/06/2010</td>
<td>Myotis brandti</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
* Dead bat

Environmental sample (see text for further explanations)
Fig. 1. Distribution of confirmed and suspected records of *G. destructans* in Europe. Data is presented for confirmed *G. destructans* records in red (circles, this study; triangles, published records), photographic evidence in yellow, visual reports in green. Dead bats without *G. destructans* are depicted as black circles.
Fig. 2. Photographic evidence showing bats with confirmed *G. destructans* growth from (A) Estonia (May 23rd 2010, © L. Lutsar), (B) Poland (March 7th 2010, © A. Wojtaszewski), (C) Belgium (March 18th 2010, © B. Mulkens), (D) France (March 4th 2010, © Y. Le Bris), (E) Netherlands (March 9th 2010, © T. Bosch) or bats with white-fungal growth suspected as *G. destructans* from (F) Austria (February 2nd 2007, © O. Gebhardt), (G) Germany (March 23rd 2010, © K. Passior), (H) Belgium (March...
(I) France (February 13th 2010, © J. Vittier), (J) Ukraine (February 13th 2010, © A.-T. Bashta), (K) France (June 25th 2010, © F. Blanc), (L) Turkey (March 22nd 2009, © M. Doker), and (M) Romania (March 29th 2008, © B. Szilárd).
Fig. 3. Graph showing the number of live bats reported with white fungal growth (n=64) per week, starting on the first observation on January 17th and ending in June 25th after the last observation.